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Desorption of swelling solvents from swollen polymer samples presents several interesting features. 
Initial rates of desorption are often very significantly larger than absorption rates, while long term 
desorption rates are extremely slow. A mathematical model which has recently been applied 
successfully to the analysis of absorption phenomena is extended to desorption. The model predicts 
all the experimentally observed features of desorption, without need of adjustable parameters. 

INTRODUCTION 

The use of thin polymeric films in packaging is growing 
rapidly. In a variety of membrane applications a polymeric 
trim may be employed for separations. Polymeric coatings 
are also used to resist corrosion and contamination. In all 
the applications not only are the rates of diffusion of 
various species through the polymeric film important but 
an even more significant problem arises when these Films 
are made. This is the removal of residual solvents and 
monomers which may be present in the polymeric film. 
Therefore, it is not surprising that the diffusion of solvents 
in solid polymers has been a subject of numerous theoretical 
as well as experimental investigations in the last two 
decades. 

Many anomalies or deviations from Fick's law of diffusion 
are observed, particularly below the glass transition tempera- 
ture of the polymer and above the threshold concentrations 
of the solvent. In general this question of non-Fickian or 
anomalous diffusion can be, perhaps arbitrarily, subdivided 
into two subquestions. The first one concerns sorption of 
solvents into the glassy polymers, and the second one deals 
with desorption of solvents from swollen polymers. The 
most characteristic feature of the former is that the weight 
of solvent sorbed into the polymer varies with time raised 
to an exponent between 0.5 and 1.0; the extreme case (1.0) 
being called Case-II transport. Most of the published 
literature are analyses of this phenomenon. Almost all of 
the analyses published up to 1976 assume a strong dependency 
of solvent diffusivity on concentration, though others based 
on swelling stresses, relaxation of polymer segments and 
convective flux of the solvent can also be found. 1-s However, 
these models have had only limited success in interpreting 
experimental data on sorption. 

The characteristic feature of the second part of the 
problem of anomalous diffusion is the observation of 
higher rates of desorption when compared to those of 
sorption over the same concentration interval. 6-8 This 
observation is an interesting contradiction of a well-known 
result in diffusion theory - for any diffusivity which is a 

monotonically increasing function of concentration of the 
diffusing species, the rate of desorption should always be 
smaller than or at most equal to that of absorption over the 
same concentration interval. 9 It is also surprising that, 
although a number of analyses have been made of the 
problem of sorption of solvents, practically none of the 
models presented so far have been aimed at explaining this 
intriguing feature of desorption of solvents from swollen 
polymers. 

Recently, Astarita and Sarti 1° proposed a model which 
takes glassy to swollen transition kinetics explicitly into 
account. The model, later extended by Astarita and Joshi, n 
has been found to correlate and predict the data on absorption 
of solvents very well. Although the model does not rely upon 
the dependence of diffusivity on concentration, and in fact 
is based on the very crude hypothesis of constant diffusivity, 
it seems potentially capable of explaining the anomaly of 
higher desorption rates. 

MODELING THE PHENOMENON 

All the available data on desorption of solvents from 
swollen polymers appear similar, at least qualitatively; 
Figure i is a typical sketch of such data. A small time 
asymptote is exhibited, where rates of desorption are large 
and proportional to the square root of time. A semi-infinite 
homogeneous polymer sample would never deviate from 
this asymptote if diffusivity is independent of concentration. 
As tile data are taken on finite, polymer Films, the deviation 
from the small time asymptote is unsurprising. However, 
what is significant is the rapid decrease in the rate of 
desorption and the extremely long tail of the desorption 
curve. In fact usually all of the solvent which goes into the 
polymer during sorption cannot be desorbed: a small 
amount always remains in the polymer, desorbing at very 
slow rates, typically this amount is only a few percents 
higher than the threshold concentration of the solvent 
required to swell the polymer. 

Consider a flat slab of swollen polymer with uniform 
solvent concentration c o which needs to be either greater 
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than or equal to c*, the threshold swelling concentration of 
the solvent. Both of these cases will be considered separately. 
The equilibrium concentration on the solvent-polymer inter- 
face will be assumed to be zero, though a case of non-zero, 
constant solvent-concentration at the interface can easily 
be treated along identical lines. 

The diffusivities in the glassy and swollen regions will be 
assumed constant, though different from each other. The 
densities of both phases will be assumed to be equal to each 
other; in other words, the bulk movement of one phase with 
respect to the other will be neglected. When external solvent 
fugacity is decreased from rata zero, a f'dm of glassy polymer 
will form on the surface. As the diffusivities are known to 
be very small through glassy polymer, the high initial rates 
of desorption can only occur if the thickness of the glassy 
film formed on the surface is extremely small. 

When the advancement of the glassification front is viewed 
as a rate process and its kinetics are taken explicitly into 
account, the identification of the driving force is crucial. 
In the analysis of Astarita and Sarti, it was assumed that 
the driving force for swelling is the difference between the 
concentration of solvent at the front on the swollen side 
and the critical swelling concentration c*. In addition a 
power law type of dependence of the rate of advancement 
of the front on this driving force was presumed. In this 
analysis glassification rather than swelling is dealt with; 
therefore, assuming that E* is the concentration on the 
glassy side in equilibrium with the threshold swelling 
concentration c* on the swollen side, the difference 
between the equilibrium solvent concentration E* and the 
local solvent concentration at the glassification front 
should serve as the driving force. An identical power law 
type dependence following Astarita and Sarti is assumed 
with presumably identical values for the constants involved, 
ie, 

dA - K ( ~ *  - E)n (1 )  
dt  

where dA]dt denotes the rate of advance of the glassifica- 
tion front. Careful analysis also reveals that the driving 
force should be located on the glassy side of the front, and 
the concentration on the swollen side of the front should 
be equal to the critical swelling concentration c*. The 
analysis proceeds along identical lines to tlae analogy 
presented by Astarita and Sarti) ° 

The moving boundary Stefan problem can now be 
formulated as follows: 

For the glassy f'drn: 

- a2~ aE 
D - 0 ~< x ~< A (t) (2) 

ax 2 at 

with boundary condition 

g(0, t) = 0 (3) 

For the swollen part: 

a2c be 
- A ( t )  ~< x ~< X (4 )  D Ox 2 at 

with boundary conditions 

c(A(t),t)  = c* (5) 

finite films, respectively, and the initial conditions 

c ( x , O )  = Co 

c( oo, t) bounded or ac/ax(x,  t) = 0 for semi-infinite and 

A(0) = 0 

The rate of advance of the front is given by: 

dA 
- -  = K f f *  - ?)" 
dt 

(6) 
(7) 

(8) 

and the material balance across the front is written as 

/3  aE_ + dA__ (~ - c * )  = D ac_ w i t h  x = A ( t )  
ax dt Ox 

(9) 

The experimental observation of large initial rates of 
desorption implies that A is very small, and therefore dA/dt 
is also very small. Equation 8 therefore suggests that the 
following assumption is justified: 

E(A,t) = E* (10) 

Of course, equation 10 cannot be exact at t = O, since from 
equations 3, 7 and 8 we get 

d~[ t=o = K((* )  n (11) 

However, the initial finite rate of advance given by equation 
11 may rapidly quench itself, and after a 'quenching time' 
t c the approximation in equation 10 should be correct. 
The model equations will be developed on the basis of 
equation 10, before estimating the quenching time tc: it 
will be seen that tc is at most 10-4s. 

Semi-infinite slab, Co > c* 

With the approximation of equation I0, the moving 
boundary problem for a semi-infinite slab is easily solved by 
a change of variables such as introduced by Neumann: 12 

= x / t  v2 (12) 

{ = a ( t ) / t  w (i3) 

The partial differential equations (2), (4) and (9) become 
ordinary ones, and by straightforward integration one 
obtains: 

E* = (rr/3)la~ erf~/2/3'A (14) 

where ~ is an as yet undetermined constant. 
Equation 14 implies that ~ is a constant, ie, from equation 
13: 

A = ~t '~ (15) 

Again from straightforward integration one obtains: 

c o - ?* = /3(TrD)Werfc ~/2D 1/2 (16) 

- -  - P  ¢ * - c * ) {  - P  
D/3 exp ~ + - D/aexp - -  (17) 

4D 2 4D 

Equations 14, 16 and 17 can be solved to yield the values 
of the three constants/3, _~ and ~; in particular the following 
equation is obtained for ~: 

{ ~  ~, - 2  E * - c * -  
erf(g/2/3V2) exp - ~  + - - 2  ~ 
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( D )  v 2 ' -  erfc (U2/)) ~2 
= C O C *  - -  

__--. 1/2 " exp - -  
4D 

(is) 

The solution is considerably simplified because/3 < D, 
which (as will be seen below) implies that 

< /3'/2 (19) 

so that equation 18 reduces to: 

= (~/3),/2 (20)  
C O - -  C • 

Considerations of equations 15 and 20 shows that the 
glassy film thickness A is very small indeed. 

Finally, the rate of desorption is calculated as: 

-d-t = - ( C o -  c*) 4t (21) 

Equation 21 shows that the model considered here 
predicts the initial high rates of desorption, and the fact 
that Wis linear in t '/:. 

The quenching time t c can now be estimated. The 
largest possible value of dA/dt is given by equation 11 ; 
equation 15 would predict dA/dt -+ oo as t -+ 0. An estimate 
of t c is obtained by requiring dA/dt as given by equation 15 
to have the value in equation 11 ; this yields: 

t c , / 2 _ / 3  (~11/2 ? * 
k(E-*)" \ D ]  Co - c* (22) 

Realistic values for the parameters appearing on the RHS of 
equation 22 are available ;11 from these, it may be calculated 
that t c is of the order of 104s  at the most. Therefore, 
desorption during the quenching time may be neglected 
altogether. 

Although the results in this section are for a semi- 
infinite slab, they are useful to describe the short-term 
behaviour of finite-thickness samples. Three points need 
to be stressed. The first is that, according to equations 15 
and 20, the thickness of the glassy film is so small that it 
can be neglected altogether. The only effect that the forma- 
tion of the glassy film has is to reduce the driving force for 
desorption from Co to Co e*; see equation 21. Indeed, 
whenever c* ~ Co, desorption from the swollen core takes 
place initially at essentially the same rate as if there were 
no glassy fdm at all. 

The second point is that, based on equation 21, values 
of the diffusivity in the swollen phase can be extracted from 
initial rates. Table 1 reports values of D calculated in this 
way from the data of Watt la for desorption of various 
solvents from wool Keratin. 

The third point to be stressed is that, since dA/dt is so 
small, one would need to go to inordinate lengths of time 
in order to glassily a non-negligible fraction of the sample; 
this in turn implies that for all practical purposes desorption 
will cease once the concentration has dropped to c* through- 
out the swollen core. This prediction of the model is in good 
agreement with the observed behaviour. 

Finite-thickness sample, Co > c* 
The finite thickness model equations do not have a closed 
form analytical solution. However, the results in the 

Table 1 Values of D for  Wool Keratin at 35°C * 

Sorbate /9 (cm2/sec) D {cm2/sec) 

Methanol 4.5 x 10 -12 1.1 x 10 -7 

Formic acid 5.3 x 10 -13 3.3 x 10 -8 

Ethanol 5.0 x 10 -13  6.8 x 10 -9 

n-propanol 5.0 x 10 -14  2.7 x 10 -8 

Acetic acid 2.5 x 10 -11 4.3 x 10 -9 

*Values of D are as reported by Watt 13 

preceding section show that, as long as the concentration 
in the swollen core is not ahnost equal to c*, the presence 
of a glassy film manifests itself only by lowering the driving 
force from Co to c o - c*. With such an approximation, the 
problem reduces to the familiar one which has the well- 
known solution: 

coC - C* ~o - 2 (n--+ ½)~ exp [ - ( n  + ½)rr2Dt]~ ] 

x cos [(n + ½) X ] (23) 

Comparison of the predictions of equation 23 with experi- 
mental data is unfortunately difficult because desorption 
data are available for systems for which the value of c* is 
not well established. However, if c* is assumed to be equal 
to the (apparent) asymptotic value of the residual concentra- 
tion in the sample, equation 23 correlates well the desorption 
rate data, indicating that the dependency of diffusivity on 
concentration, if not zero, is in fact of minor importance. 

However, the real test of our model is based on the fact 
that it predicts the existence of an extremely thin glassy 
layer up to the end of region IlinFigure 1. Therefore,the 
model predicts that, if a sample from which desorption has 
taken place to that limit is exposed again to a high external 
activity of solvent, it will absorb at a much faster rate than 
in the first cycle, since there would now be no glassy -+ 
swollen kinetic resistance. Furthermore, the model predicts 
that such a reabsorption process would proceed as a 
classical Fickian process. 

Both predictions are well confirmed by available experi- 
mental data. Pogany 14 reports rates of water reabsorption 
into polystyrene at 80°C twice as large as the rates of 
initial absorption at 100°C. Baird, Hopfenberg and 
Stannett is report rates of reabsorption which are at least 
four times larger than the rates of initial absorption of 
n-pentane in annealed polystyrene. Lewis t6 reports data 
for acetone in nitrocellulose; the initial rates of reabsorption 
are approximately equal to those of desorption, but about 
four times faster than rates of initial absorption; reabsorption 
appears to be Fickian. 

This appears to be substantial evidence for the inter- 
pretation of region II in Figure I on the basis of equation 23, 
with an appropriate value for c*. The behaviour in region III 
(the 'very long time' region) is examined in the next section. 

Finite thickness sample, c o = c* 
For this case, the mathematical formulation is only marginally 
different from that for a slab with c o > c*. No diffusion 
takes place inside the swollen core, and therefore the 
finite-thickness and semi-infinite slab solutions coincide as 
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Figure I Weight of the polymer film vs. (time) '~ 

long as A ~< ×. Only equations 2, 3, 7, 9 and 10 need to be 
considered; the RHS of equation 9 is equal to zero. Again a 
classical Neumann change of variables reduces the differential 
equations to ordinary ones, and by straightforward integration 
one obtains: 

y2 

dW_dt /3 ( ~ ) 4  (24) 

where the constant/3 is to be calculated by solving 
simultaneously for/3 and 7 the following two equations: 

/3e -'r ' = 2(c*.- ~*)7 (25) 

~* /3 nv '  = - -  e r f 7  (26)  
2 

An estimate of the magnitude of/3 can be obtained by 
considering the likely case where: 

- -  ~ 1 (27)  
c* - ~ *  

If  equation 27 is satisfied, 

/~ = [27"(c*  - ~ * ) ]  v, (28 )  

With/3 evaluated from equation 28, comparison of equations 
23 and 24 shows that the 'very long time' rate of  desorption 

is indeed much smaller than the 'intermediate' one as long 
as the concentration in the swollen core is even very 
marginally larger than c*. 

CONCLUSIONS 

A straightforward extension of the Astarita and Sarti model 
to the desorption case predicts qualitatively the desorption 
behaviour observed experimentally, for all three of the 
regions in Figure 1. 

In particular, the fact that initial rates of  desorption are 
often higher than rates of  absorption is predicted. Indeed, 
whenever absorption rates are non-Fickian, the model 
predicts them to be significantly lower than Fickian. The 
same model, on the contrary, predicts desorption rates to 
be only marginally lower than calculated from classical 
Fickian theory. 
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